

SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 9.1. - Enzymatic kinetics, microbial kinetics and metabolic

stoichiometry - Brief review on enzymatic reaction kinetics

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School

UNIVERSIDAD FRANCISCO DE VITORIA

AIMS FOR TODAY'S LESSON

1.- ABOUT KINETICS (again, not kidding):

Reviewing chemical kinetics and terminology.

2.- ABOUT RATES:

reaction rates // production rates.

3.- ABOUT KINETIC MODELS:

What a model is.

Kinds of models.

Introduction	Chemical/Enzyme Kinetics			Rates		Kinetic Models				
REFERENCES:										
Bail	ey, J.E.,	Ollis D.	F. (*	1986),	Biochemical	Engineering				
Fundamentals, McGraw-Hill (New York).										

Doran, P.M. (2013), Bioprocess Engineering Principles,

Academic Press (London).

INTRODUCTION TO BIOREACTOR DESIGN

WHAT WE ARE GOING TO TALK ABOUT...

KINETICS:

RATES:

KINETICS MODELS:

WHAT WE ARE GOING TO TALK ABOUT...

KINETICS:

Definition

Aims

RATES:

KINETICS MODELS:

WHAT WE ARE GOING TO TALK ABOUT...

KINETICS:

RATES:

Reaction rate

Production rate

Mass Balance and rates.

KINETIC MODELS:

WHAT WE ARE GOING TO TALK ABOUT...

KINETICS:

RATES:

KINETICS MODELS:

Definition of "model".

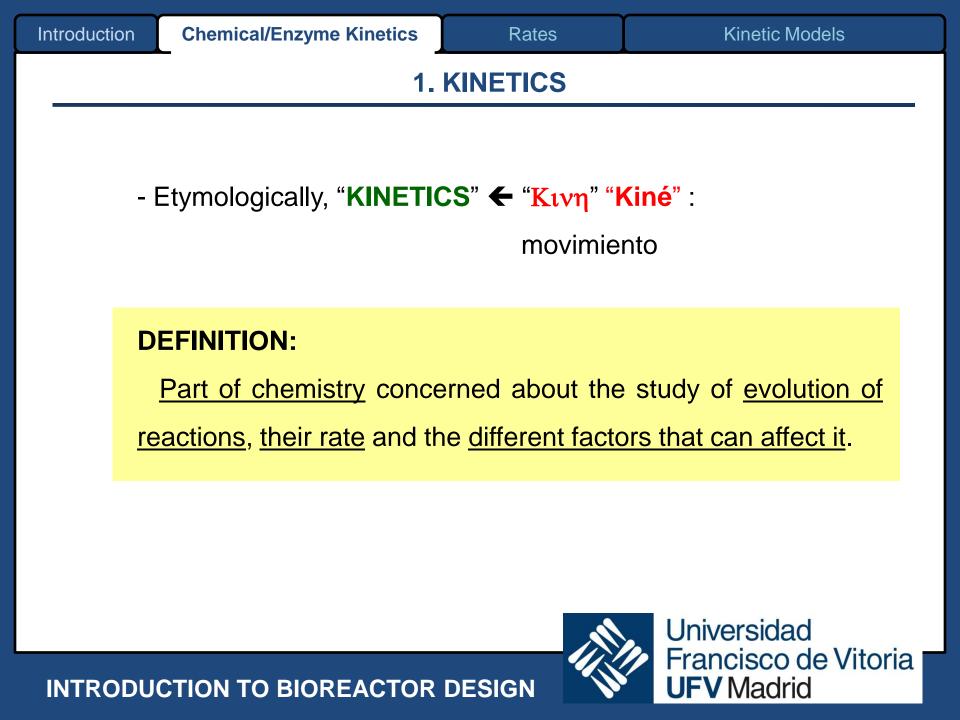
What for?

Kinds of models.

1.- KINETICS

2.- *RATES*

3.- KINETIC MODELS


INTRODUCTION TO BIOREACTOR DESIGN



1.- KINETICS

INTRODUCTION TO BIOREACTOR DESIGN

1. KINETIC AIMS

- 1. Establish the mechanism of a reaction
- 2. Know molecular structures
- 3. Study bond formation / breakage
- 4. Infer the relationship between reaction rate and process variables (temperature, concentration, pressure, etc.)

Chemical Reaction Engineering

(Applied Chemistry Kinetics)

KINETIC MODEL

Universidad Francisco de Vitoria **UFV** Madrid

1.- KINETICS

2.- *RATES*

3.- KINETIC MODELS

INTRODUCTION TO BIOREACTOR DESIGN

2.- *RATES*

INTRODUCTION TO BIOREACTOR DESIGN

IntroductionChemical/Enzyme KineticsRatesKinetic Models2. RATESExample:
Reaction network
or metabolic path
$$R_{a} = -a \cdot r_{1} + a' \cdot r_{3}$$

 $R_{b} = -b \cdot r_{1} - b' \cdot r_{2}$
 $R_{b} = -b \cdot r_{1} - b' \cdot r_{2}$
 $R_{c} = -c \cdot r_{2}$
 $R_{b} = -d \cdot r_{3}$
 $R_{c} = -c \cdot r_{3}$
 $R_{b} = -d \cdot r_{3}$
 $R_{c} = s \cdot r_{1} - s' \cdot r_{3}$
 $R_{c} = q \cdot r_{1}$
 $R_{j} = \sum_{i=1}^{N} v_{j,i} \cdot r_{i}$ MITCODUCTION TO BIOREACTOR DESIGN

1.- KINETICS

2.- *RATES*

3.- KINETIC MODELS

INTRODUCTION TO BIOREACTOR DESIGN

3.- KINETIC MODELS

INTRODUCTION TO BIOREACTOR DESIGN

BIOREACTOR DESIGN

3. KINETIC MODELS

KINETIC EQUATION: algebraic expression able to predict, quantitative talking, the relatioship between **REACTION RATE** and **VARIABLES** affecting it.

In order to obtain this equation **KINETIC PARAMETERS** need to be established.

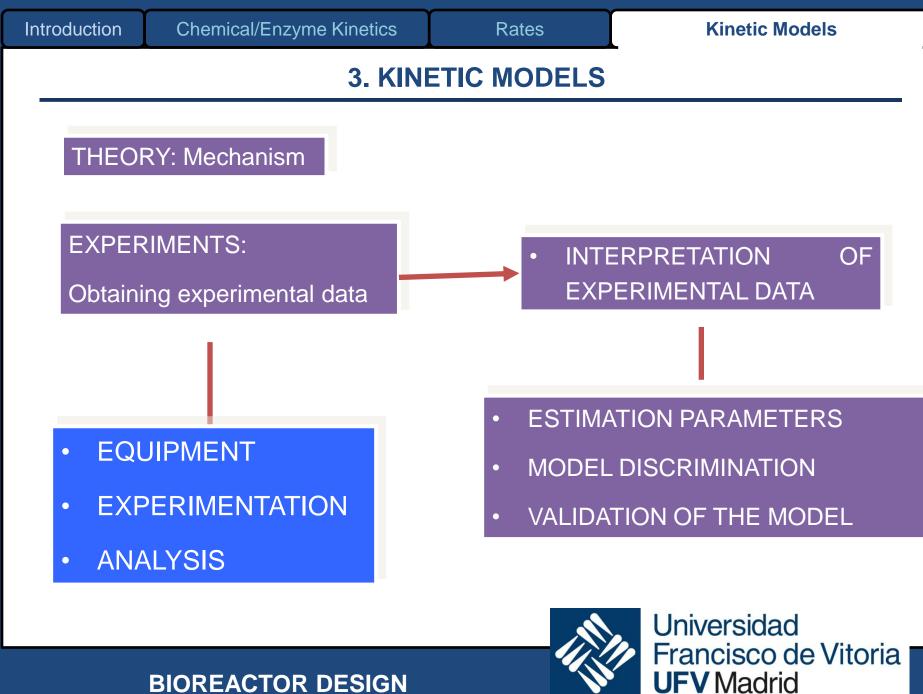
KINETIC MODEL: Set of kinetic equations for each reaction in a **REACTION NETWORK**.

FV Madrid

3. KIND OF KINETIC MODELS

According the way the are obtained:

- Empirical models: statistical relationship between variables, r=f(C,T) by data fitting.
- 2. Mechanistic models: deduced equations from an hypothetical mechanism.


According the kind of kinetic equation:

1. Potential models: variables can be separated, elemental reactions

$$r = f(Composition) = k \cdot [A]^{n_1} \cdot [B]^{n_2} \cdots$$

2. Hyperbolic models: variables cannot be separated. Non elemental reactions.

$$r = f(Composition) = \frac{k \cdot [A]^{n_1} \cdot [B]^{n_2} \cdots}{1 + K_A \cdot [A]^{n_1} + K_B \cdot [B]^{n_2} \cdots}$$

Francisco de Vitoria

Starting point:

Choosing the best approach in order to describe the evolution of our system:

a) **Theorical approach**: using predictive models. Broadly speaking results are less realistic.

b) **Empirical approach**: Chemical Reaction Engineering builds empirical models from experimental data.

Starting point:

b) Empirical approach: steps ->

1) Thinking up the experimental system:

Phase contact: study little by little: 1 phase, several phases

Identification of Rate-determining step, Stoichiometry, Thermodynamics.

2) Data Generation

Issues: experimental equipment (batch, continuous, semicontinuous),

experimental conditions, experimental design and instrumental facilities.

Universidad Francisco de Vitoria **UFV** Madrid

Starting point :

- b) Empirical approach: steps ->
- 3) Data interpretation and analysis

Issues:

- ➢ Proposing different candidate models
- Mathematic transformation of models
- ➤Kinetic parameters calculation and statistics
- ≻Model discrimination (choosing the most appropriate one)
- ≻ Validation of model: accuracy.

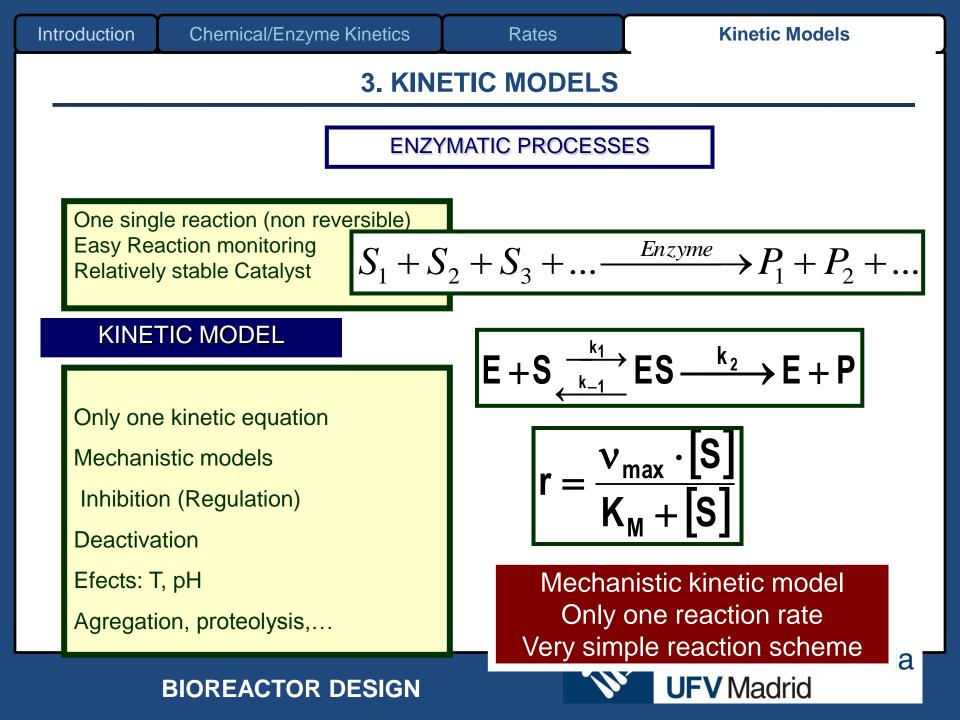
Universidad Francisco de Vitoria **UFV** Madrid

➤Kinetic parameters calculation and statistics.

Classic calculus methods: differential / integral. Fitting methods: simple or multiple regression (linear or non linear)

➤Model discrimination:

Physical criteria


Statistical criteria:

Confidence level.

Statistical significance of fitting.

Universidad Francisco de Vitoria **UFV** Madrid

	ntroduction	Chemical/Enzyme Kinetics	Rates		Kinetic Models					
	3. KINETIC MODELS									
ALIVE CELLS IN BIOPROCESSES STOICHIOMETRY										
	Many enzy	matic reactions: Metabolism	Substrate	es Cells	→CELLS					
	•	cheme of reactions: need simp : stoichiometric study	Substrate	es Cells	→Products					
'	KINETIC	MODELS		Substrate	es Cells	→Energy				
	Each KEY COMPUND for each reaction Autocatalytic reactions Slow process → higher reactor volume or reaction time Depending on cell type: chemo-, photo-, heterotroph, autotroph O ₂ (aerobic, anaerobic), T, pH cell state: phase growth, viability, stability (GMO) Empirical equations → Problems in Scaling up NEED OF SIMPLIFCATION: Structure, segregation									
Simplified reaction scheme Many reaction rates, kinetic parameters (macroscopic) BIORI Empirical kinetic model: key components										

Rates

3. KINETIC MODELS

CÁLCULOS DE LOS PARÁMETROS CINÉTICOS:

- To estimate the values of K_M and ν_{max} least squares fitting can be used on Michaelis-Menten linearizations.

-LINEARIZATION: transformation of the equation by rearranging its terms, to generate a <u>linear graphical plotting</u>.

SUGGESTED LINEARIZATIONS:

- 1) Lineweaver-Burk
- 2) Eadie-Hofstee
- 3) Hanes-Wolf

3. KINETIC MODELS

TWO SUBSTRATES and TWO PRODUCTS:

A + B + E ←→ P + Q + E

SITUATION 1: Formation of one ternary complex

between substrate A, substrate B and enzyme:

- Random
- Ordered

SITUATION 2: Ping-Pong Mechanism

- → Via <u>binary complexes</u>
- ➔ First, enzyme gets in contact with one of the substrates so that one first product is generated..
- → Then, the second substrate enters so that enzyme is released and the second product generated.

BIOREACTOR DESIGN

Francisco de Vitoria **UFV** Madrid

ANY QUESTION?

INTRODUCTION TO BIOREACTOR DESIGN

SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 9.1. - Enzymatic kinetics, microbial kinetics and metabolic

stoichiometry - Brief review on enzymatic reaction kinetics

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School

UNIVERSIDAD FRANCISCO DE VITORIA